Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Which of the following is not the value of $2\,\tan^{-1}x$ ?

Inverse Trigonometric Functions

Solution:

Since $ \frac{2\,tan\,\theta}{1-tan^{2}\theta} = tan \,2\,\theta$
$\frac{ 1-tan ^{2}\theta}{1+tan^{2}\theta} = cos \,2\,\theta,\frac{ 2\,tan \,\theta}{1+tan\,\theta} = sin \,2\,\theta$
$ \therefore \left(b\right)= 2\,\theta, \left(c\right)=2\,\theta, \left(d\right)= 2\,\theta = 2\,tan^{-1}x $
Hence $tan^{-1} \frac{2x}{1+x^{2}} \ne 2\,tan^{-1} x$