Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Which of the following is an odd function?

J & K CETJ & K CET 2003

Solution:

Let $ f(x)=|x|+1 $
$ \therefore $ $ f(-x)=|-x|+1 $
$=f(x), $ even function [b] Let $ f(x)=\,\sin x+\cos x $
$ \therefore $ $ f(-x)=\sin \,(-x)+\cos (-x) $
$=-\sin \,x+\,\cos \,x $ neither even nor odd function
Let $ f(x)={{x}^{2}}\,\,\sec x+x\,{{\tan }^{2}}x $
$ \therefore $ $ f(-x)={{x}^{2}}\,\sec \,\,x-x\,{{\tan }^{2}}x $ neither even nor odd function
Let $ f(x)={{x}^{2}}\,\cot \,x+4{{x}^{2}}\,\text{cosec x+}{{\text{x}}^{5}} $
$ \therefore $ $ f(-x)=-{{x}^{2}}\,\cot \,x-4{{x}^{4}}\,\text{cosec x-}{{\text{x}}^{5}} $
$=-f(x), $ odd function
Hence, option is correct.