Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Which of the following functions is differentiable at $x = 0$ ?

COMEDKCOMEDK 2009Continuity and Differentiability

Solution:

Let $f(x) = \sin(|x|) - |x|$
$ \Rightarrow f\left(x\right) = \begin{cases} \sin \: x - x, x > 0 \\ - \sin \: x + x, x > 0 \end{cases}$
$ \Rightarrow f'\left(x\right) = \begin{cases} \cos\: 1 - x, x \geq 0 \\ - \cos\: x + 1, x > 0 \end{cases}$
$ \therefore $ L.H.D = $\lim_{x\to0^{-}}\left(-\cos x+1\right) = -1+1=0$
R.H.D = $\lim_{x\to0^{+}}\left(\cos x - 1\right) = -1 - 1=0$
$ \because$ L.H.D = R.H.D
$ \therefore \:\:\: f(x)$ is differentiable at $x = 0$