Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Which of the following functions fail to satisfy the condition of Rolle's theorem on the interval $[-1,1]$, where $[x]$ denotes the greatest integer less or equal to $x$ and $\{x\}$ denotes the fractional part of $x$ respectively.

Application of Derivatives

Solution:

(A) $f(x)=\begin{cases}1, & x=1 \\ 0, & 0 \leq x<1 \\ x & -1 \leq x<0\end{cases} \Rightarrow $ not differentiable at $x=0$ in $(-1,1)$
(B) $ f (0)=0$ and $\underset{ x \rightarrow 0} {\text{Lim}} \frac{\tan x }{ x }=1 \Rightarrow$ not continuous at $x =0$
(C) $f ( x )=\begin{cases}1, & x \notin I \\ 0, & x \in I \end{cases} \Rightarrow $ not continuous at $x =0$
(D) $ f ( x )=\begin{cases}x -\sin x & 0 \leq x \leq 1 \\ - x +\sin x & -1 \leq x <0\end{cases} \Rightarrow$ continuous \& differentiable at $\left.x =0\right]$