Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Which of the following function is not differentiable at $x=0 ?$
(i) $f(x)=\left(x^{2}-1\right)|(x-1)(x-2)|$
(ii) $f(x)=\sin (|x-1|)-|x-1|$
(iii) $f(x)=\tan (|x-1|)+|x-1|$

Continuity and Differentiability

Solution:

(i) $f(x) =\left(x^{2}-1\right)|(x-1)(x-2)| $
$f'\left(1^{+}\right) =\displaystyle\lim _{h \rightarrow 0} \frac{\left((1+h)^{2}-1\right)|h(1+h-2)|-0}{h}=0$ $f'\left(1^{-}\right) =\displaystyle\lim _{h \rightarrow 0} \frac{\left((1-h)^{2}-1\right)|-h(1-h-2)|-0}{-h}=0 $
Hence, it is differentiable at $x=0$.
(ii) $f(x)=\sin (|x-1|)-|x-1|$
$f'\left(0^{+}\right)=\displaystyle\lim _{h \rightarrow 0} \frac{\sin h-h-0}{h}=0$
$f'\left(0^{-}\right)=\displaystyle\lim _{h \rightarrow 0} \frac{\sin |-h|-|-h|}{-h}=\displaystyle\lim _{h \rightarrow 0} \frac{\sin h-h}{-h}=0$
Hence, $f(x)$ is differentiable at $x=0$
(iii) $f(x)=\tan (|x-1|)+|x-1|$
$f'\left(0^{+}\right)=\displaystyle\lim _{h \rightarrow 0} \frac{\tan h+h-0}{h}=2$
$f'\left(0^{-}\right)=\displaystyle\lim _{h \rightarrow 0} \frac{\tan |-h|+\mid-h}{-h}=\displaystyle\lim _{h \rightarrow 0} \frac{\tan h+h}{-h}=-2$
Hence, $f(x)$ is non-differentiable at $x=0$