Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Which of the following function correctly represent the travelling wave equation for finite values of $x$ and $t$ :

Waves

Solution:

we have
$y=\log \frac{x^{2}-t^{2}}{x-t}=\log (x +t)$
$\left[\right.$ As $\left.\log a-\log b=\log \frac{a}{b}\right]$
$\Rightarrow \frac{\partial y}{\partial x}=\frac{1}{(x +t)}$
$\Rightarrow \frac{\partial^{2} y}{\partial x^{2}}=-\frac{1}{(x +t)^{2}}$
and $\frac{\partial y}{\partial t}=\frac{(\partial x / \partial t)}{(x+ t)}=\frac{v}{(x +t)}$
$\Rightarrow \frac{\partial^{2} y}{\partial t^{2}}=-\frac{v^{2}}{(x +t)^{2}}$
$\Rightarrow \frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}$
Which is the general form of wave equation.