Thank you for reporting, we will resolve it shortly
Q.
Which of the following function correctly represent the travelling wave equation for finite values of $x$ and $t$ :
Waves
Solution:
we have
$y=\log \frac{x^{2}-t^{2}}{x-t}=\log (x +t)$
$\left[\right.$ As $\left.\log a-\log b=\log \frac{a}{b}\right]$
$\Rightarrow \frac{\partial y}{\partial x}=\frac{1}{(x +t)}$
$\Rightarrow \frac{\partial^{2} y}{\partial x^{2}}=-\frac{1}{(x +t)^{2}}$
and $\frac{\partial y}{\partial t}=\frac{(\partial x / \partial t)}{(x+ t)}=\frac{v}{(x +t)}$
$\Rightarrow \frac{\partial^{2} y}{\partial t^{2}}=-\frac{v^{2}}{(x +t)^{2}}$
$\Rightarrow \frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}$
Which is the general form of wave equation.