Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Which of the following are identical functions?
(where $[ x$ ] denotes greatest integer less than or equal $x ,\{ x \}$ denotes fractional part of $x$ and $\operatorname{sgn} x$ denotes signum function of $x$ respectively.)

Relations and Functions - Part 2

Solution:

(A) $ \operatorname{sgn}(|x|+1)=1 \forall x \in R$.
(B) $ \sin ^2(\ln x )+\cos ^2(\ln x )=1 \forall x \in R ^{+}$
(C) $\frac{2}{\pi}\left(\sin ^{-1}\{x\}+\cos ^{-1}\{x\}\right)=1 \forall x \in R$.
(D) $\sec ^2[\{x\}]-\tan ^2\{[x]\}=\sec ^2 0^{\circ}-\tan ^2 0^{\circ}=1 \forall x \in R$.