Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. When the temperature of an ideal gas is increased by 600 K, the velocity of sound in the gas becomes $ \sqrt{3} $ times the initial velocity in it. The initial temperature of the gas is:

EAMCETEAMCET 2000

Solution:

Let initial temperature is T ie $ {{T}_{1}}=T $ Then, $ {{T}_{2}}=T+600 $ Velocity of sound in gas $ v\propto \sqrt{T} $ $ \frac{{{v}_{2}}}{{{v}_{1}}}=\sqrt{\frac{{{T}_{2}}}{{{T}_{1}}}} $ According to questions $ {{v}_{2}}=\sqrt{3}{{v}_{1}} $ $ \frac{\sqrt{3}{{v}_{1}}}{{{v}_{1}}}=\sqrt{\frac{T+600}{T}} $ $ \sqrt{3}=\sqrt{\frac{T+600}{T}} $ $ \therefore $ $ 3T=T+600 $ $ T=300\,K $ $ =300-273\,=27{{\,}^{o}}C $