Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. When electron is accelerated between 500 keV, what is the percentage increase in mass?

ManipalManipal 2013

Solution:

Kinetic energy of photoelectron
$ KE=500\,keV=500\times {{10}^{3}}eV $
$ KE=m{{c}^{2}}-{{m}_{0}}{{c}^{2}} $
$ \frac{KE}{{{m}_{0}}{{c}^{2}}}=\frac{m{{c}^{2}}-{{m}_{0}}{{c}^{2}}}{{{m}_{0}}} $
$ =\frac{m-{{m}_{0}}}{{{m}_{0}}}=\frac{\Delta m}{{{m}_{0}}} $
$ \frac{\Delta m}{m}=\frac{KE}{{{m}_{0}}{{c}^{2}}} $
Hence % increase in mass is
$ =\frac{\Delta m}{m}\times 100=\frac{KE}{{{m}_{0}}{{c}^{2}}}\times 100 $
$ =\frac{500\times {{10}^{3}}}{0.511\times {{10}^{6}}}\times 100 $
$ =\frac{5}{5.11}\times 100=97.85% $