Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. When electromagnetic radiation of wavelength $300\, nm$ falls on the surface of a metal, electrons are emitted with the kinetic energy of $1.68 \times 10^5\, J\, mol ^{-1}$. What is the minimum energy needed to remove an electron from the metal?
$\left( h =6.626 \times 10^{-34} Js , c =3 \times 10^8 ms ^{-1}\right. \text {, }\left.N _{ A }=6.022 \times 10^{23} \, mol ^{-1}\right)$

NEETNEET 2022Structure of Atom

Solution:

Energy of a $300\, nm$ photon is given by $\Rightarrow$
$E =\frac{ hc }{\lambda}=\frac{6.626 \times 10^{-34} \, Js \times 3 \times 10^8 ms ^{-1}}{300 \times 10^{-9}\, m } $
$=6.626 \times 10^{-19} J$
Energy of one mole of photons
$=6.626 \times 10^{-19} J \times 6.022 \times 10^{23} \, mol ^{-1}$
$=3.99 \times 10^5 \, J\, mol ^{-1}$
The minimum energy needed to remove one mole of electrons $=(3.99-1.68) \times 10^5 \, J\, mol ^{-1}$
$=2.31 \times 10^5 \, J \, mol ^{-1}$