Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. When does the inverse of the statement $p \Rightarrow-q$ results in $\mathrm{F}$ ?

Statements

Solution:

Given: $p \Rightarrow \sim q$
Using truth table, check options
(a) $p=\mathrm{T}, q=\mathrm{T}$
So, $p \Rightarrow \sim q$ is $\mathrm{F} $
$\therefore$ inverse of $p \Rightarrow \sim q$ is $\mathrm{T}$
(b) $p=\mathrm{T}, q=\mathrm{F}$
So, $p \Rightarrow \sim q$ is $\mathrm{T} $
$\therefore$ inverse of $p \Rightarrow \sim q$ is T
(c) $p=\mathrm{F}, q=\mathrm{F}$
So, $p \Rightarrow \sim q$ is $\mathrm{T} $
$\therefore$ inverse of $p \Rightarrow \sim q$ is $\mathrm{F}$