Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. When a thin transparent sheet of refractive index $\mu =\frac{3}{2}$ is placed near one of the slit in YDSE, the intensity at centre of screen reduces to half of maximum intensity. Then, minimum thickness of sheet should be

NTA AbhyasNTA Abhyas 2020Wave Optics

Solution:

$l_R=4 l_0 \cos ^2\left(\frac{\Delta \theta}{2}\right)$
As given $l_R$ at centre is $2 l_0$, then $2 I_0=4 l_0 \cos ^2\left(\frac{\Delta \theta}{2}\right)$
$\Rightarrow $ $\left(\frac{\Delta \theta }{2}\right)=\frac{\pi }{4}$ [for minimum result]
$\Delta \theta =\frac{\pi }{2}$
$\Delta x=\Delta \theta \times \frac{\lambda }{2 \pi }=\frac{\lambda }{4}$
For slab $\Delta x=\left(\mu - 1\right)t$
$\left(\frac{3}{2} - 1\right)t=\frac{\lambda }{4}$
$t=\frac{\lambda }{2}$