Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. What would be the wavelength and name of series respectively for the emission transition for $H$-atom if it starts from the orbit having radius $1.3225\,nm$ and ends at $211.6\,pm$?

Structure of Atom

Solution:

Radius of $n^{th}$ orbit
$=\frac{0.529 \times n^{2} }{Z} \mathring{A}=\frac{52.9 \times n^{2}}{Z}pm$
Radius $\left(r_{2}\right)=1.3225\,nm=1322.5\,pm=\frac{52.9n^{2}_{2}}{Z}$
Radius $\left(r_{1}\right)=211.6\,pm=\frac{52.9\,n^{2}_{1}}{Z}$
$\therefore \frac{r_{2}}{r_{1}}=\frac{1322.5}{211.6}=\frac{n^{2}_{2}}{n^{2}_{1}}$
$\Rightarrow 6.25=\frac{n^{2}_{2}}{n^{2}_{1}}=\left(\frac{n_{2}}{n_{1}}\right)^{^2}$
$\Rightarrow \frac{n_{2}}{n_{1}}=\sqrt{6.25}$
$=2.5$
$\therefore n_{1}=2$, $n_{2}=5$ thus, the transition is from $5^{th}$ orbit to $2^{nd}$ orbit. It belongs to Balmer series.
$\bar{v}=R\left(\frac{1}{n^{2}_{1}}-\frac{1}{n^{2}_{2}}\right)$
$\Rightarrow \bar{v} =1.097\times10^{7}\left(\frac{1}{2^{2}}-\frac{1}{5^{2}}\right)$
$=1.097\times10^{7}\left(\frac{1}{4}-\frac{1}{25}\right)$
$=1.097\times10^{7}\times\frac{21}{100}$
$\lambda=\frac{1}{\bar{v}}=\frac{100}{1.097 \times 21 \times 10^{7}}m$
$=4.34\times10^{-7}\,m=434\times10^{-9}\,m$
$\lambda=434\,nm$
Thus, it lies in the visible region.