Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. What will be the relation between the $ T_1 $ of gas $ 1 $ with $ M_1 = 56 $ and $ T_2 $ of gas $ 2 $ with $ M_2 = 44 $ if the average speed of gas $ 1 $ is equal to most probable speed of gas $ 2 $ ?

J & K CETJ & K CET 2018States of Matter

Solution:

$c_{av}=\sqrt{\frac{8RT}{\pi M}} ; $
$c_{mp}=\sqrt{\frac{2RT}{M}}$
Given that, $\sqrt{\frac{8RT_{1}}{\pi M_{1}}}=\sqrt{\frac{2RT_{2}}{M_{2}}}$
$\Rightarrow \frac{8T_{1}}{\pi M_{1}}=\frac{2T_{2}}{M_{2}}$
$\frac{4T_{1}}{\pi\times56}=\frac{T_{2}}{44}$
$\Rightarrow \frac{T_{1}}{T_{2}}=\frac{56\times\pi}{44\times4}=1$
$\Rightarrow T_{1}=T_{2}$