Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. What will be the percentage increase in the length of wire, if longitudinal stress of $1\,kg/mm^{2}$ is applied on it? $\left(Y = 10^{11} N / m^{2}\right)$

NTA AbhyasNTA Abhyas 2022

Solution:

from hooke's law
Stress $\propto$ Strain
From the question given that stress $=1\,kg/mm^{2}$
$\Rightarrow 1\,kg/10^{- 6}m^{2}$
$\Rightarrow 10^{6}kg/m^{2}$
Young's modulus $Y=10^{11}N/m^{2}$
$\frac{\Delta L}{L}\times 100=?$
Stress $=10^{6}\times 9.8\,N/m^{2}$
$\left[\because \frac{1 k g}{m} = 1 \times 9 . 8 \,N / m^{2}\right]$
$\Rightarrow $ Strain $=\frac{\text{Stress}}{Y}$
strain is change in length upon orignal length
$\frac{\Delta L}{L}\Rightarrow \frac{9 . 8 \times 10^{6}}{10^{11}}$
$\Rightarrow \frac{\Delta L}{L}\times 100=9.8\times 10^{- 5}\times 100$
$\Rightarrow 10\times 10^{- 5}\times 100$
$\Rightarrow 10^{- 2}$
$\left[\because 9 . 8 \simeq 10\right]$
$\frac{\Delta L}{L}\times 100=0.01$