Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. What will be the displacement equation of the simple harmonic motion obtained by combining the motions?

$x_{1}=2sin \omega t, \, \, x_{2}=4sin ⁡ \left(\omega t + \frac{\pi }{6}\right) \, and \, x_{3}=6sin ⁡ \left(\omega t + \frac{\pi }{3}\right)$

NTA AbhyasNTA Abhyas 2020Oscillations

Solution:

The resultant equation is
$x=Asin \left(\omega t + \phi\right)$
$\displaystyle \sum A_{x}=2+4cos 30^\circ +6cos⁡60^\circ =8.46$
Solution
And $\displaystyle \sum A_{y}=4sin 30^\circ +6cos⁡30^\circ =7.2$
$\therefore \, \, \, A=\sqrt{\left(\displaystyle \sum A_{x}\right)^{2} + \left(\displaystyle \sum A_{y}\right)^{2}}$
$= \, \, \sqrt{\left(8.46\right)^{2} + \left(7.2\right)^{2}}=11.25$
And $tan \phi=\frac{\displaystyle \sum A_{y}}{\displaystyle \sum A_{x}}=\frac{7.2}{8.46}=0.85$
$\Rightarrow \quad \phi=\tan ^{-1}(0.85)=40.4^{\circ}$
Thus, the displacement equation of combined motion is
$x=11.25sin \left(\omega t + \phi\right)$
Where, $\phi=40.4^\circ $