Thank you for reporting, we will resolve it shortly
Q.
What is the value of $\tan^{-1} x + \cot^{-1} x $ ?
Inverse Trigonometric Functions
Solution:
Let $\tan^{-1} x = p $ so, $\tan p = x$
$ \tan p = \cot \left(\frac{\pi}{2} - p \right) $
$\Rightarrow x = \cot \left(\frac{\pi}{2} - p \right) \Rightarrow \cot^{-1} x = \frac{\pi}{2} - p$
So, $ \tan^{-1} x + \cot^{-1} x = p + \frac{\pi}{2} - p$
$ = \frac{\pi}{2} , \forall x \in R $