Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. What is the value of $\sin \left(\frac{5 \pi}{12}\right) ?$

Trigonometric Functions

Solution:

$\sin \frac{5 \pi}{12}=\sin 75^{\circ}$
$=\sin \left(45^{\circ}+30^{\circ}\right)=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 35^{\circ}$
$=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{2}=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{3}+1}{2}\right)$
$=\frac{\sqrt{3}+1}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{6}+\sqrt{2}}{4}$