Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. What is the strength of transverse magnetic field required to bend all the photoelectrons within a circle of a radius $50 \, cm$ when light of wavelength $3800 \, \mathring{A}$ is incident on a barium emitter? (Given that work function of barium is $2.5 \, eV; \, h=6.63\times 10^{- 34} \, J \, s$ ; $e=1.6\times 10^{- 19} \, C$ ; $m=9.1\times 10^{- 31} \, kg$ )

NTA AbhyasNTA Abhyas 2022

Solution:

$\frac{1}{2} m v_{\max }^{2}=\frac{h c}{\lambda}-\phi_{0}$ or $v_{\max }^{2}=\frac{2}{m} \frac{h c}{\lambda}-\Phi_{0}$
$=\frac{2}{9.1 \times 10^{-31}} \times \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{3.8 \times 10^{-7}}-2.5 \times 1.6 \times 10^{-19}$
$=27.12 \times 10^{10} m ^{2} s ^{-2}$
NoW, $B=\frac{m v_{\max }}{e R_{\max }}=\frac{9.1 \times 10^{-31} \times 5.21 \times 10^{5}}{1.6 \times 10^{-19} \times 0.5}$
$=6.32 \times 10^{-6} T$