Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. What is the phase difference between two simple harmonic motions represented by $x_{1}=A \sin \left(\omega t+\frac{\pi}{6}\right)$ and $x_{2}=A \cos (\omega t) ?$

WBJEEWBJEE 2012Oscillations

Solution:

Given,
$x_{1}=A \sin \left(\omega t+\frac{\pi}{6}\right)$
$x_{2}=A \cos (\omega t)$
$x_{2}=A \cos t\left(\omega t+\frac{\pi}{2}\right)$
Phase difference
$\Delta \phi=\phi_{2}-\phi_{1}$
$\Delta \phi=\frac{\pi}{2}-\frac{\pi}{6}$
$\Delta \phi=\frac{3 \pi-\pi}{6}=\frac{\pi}{3}$