Thank you for reporting, we will resolve it shortly
Q.
What is the conjugate of $\frac{\sqrt{5+12 i}+\sqrt{5-12i}}{\sqrt{5+12i}-\sqrt{5-12i}}$ ?
Complex Numbers and Quadratic Equations
Solution:
Let $z=\frac{\sqrt{5+12i}+\sqrt{5-12i}}{\sqrt{5+12i}-\sqrt{5-12i}}\times\frac{\sqrt{5+12i}+\sqrt{5-12i}}{\sqrt{5+12i}+\sqrt{5-12i}}$
$=\frac{5+12i+5-12i+2\sqrt{25+144}}{5+12i-5+12i}$
$=\frac{3}{2i}=\frac{3i}{-2}=0-\frac{3}{2}i$
Therefore, the conjugate of $z=0+\frac{3}{2}i$