Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. What is order with respect to $A, B, C$, respectively
[A] [B] [C] rate(M/sec.)
0.2 0.1 0.02 $8.08 \times 10^{-3}$
0.1 0.2 0.02 $2.01 \times 10^{-3}$
0.1 1.8 0.18 $6.03 \times 10^{-3}$
0.2 0.1 0.08 $6.464 \times 10^{-2}$

VITEEEVITEEE 2018

Solution:

If rate $= k\left[A\right]^{x} \left[B\right]^{y} \left[C\right]^{z}$
From first two given data
$8.08 \times 10^{-3} = k \left[0.2\right]^{x}\times \left[0.1\right]^{y}\left[0.02\right]^{z}.... \left(1\right)$
$2.01 \times 10^{-3} = k \left[0.1\right]^{x}\times \left[0.2\right]^{y}\left[0.02\right]^{z}.... \left(2\right)$
Divide $\left(1\right)$ by $\left(2\right)$ we get, $4 = 2^{x} \left(1/2\right)^{y}$
Similarly, from second and third data
$\left(9\right)^{y}\left(9\right)^{z} = 3 2y+2z= 1$.
From first and fourth data $4^{z} = 8 = 2^{3}2z = 3$.
So $z = 3/2, y=- 1, \,x = 1$