Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. What equal charges would have to be placed on earth and moon to neutralize their gravitational force of attraction? Given that mass of earth $=10^{25} kg$ and mass of moon $=10^{23} kg$

Electric Charges and Fields

Solution:

If $q$ is charge on the earth and the moon, then
$\frac{1}{4\,\pi \,\varepsilon_0} \cdot \frac{q \times q}{r^2} = G \frac{M_{\text{earth}} \times M_{\text{moom}}}{r^2}$
or $q=\sqrt{4 \pi \varepsilon_{0} G M_{\text {earth }} M_{\text {moon }}}$
Setting $G=6.6 \times 10^{-11} Nm ^{2} kg ^{-2}$ ;
$ M _{\text {earth }}=10^{25} kg$
and $M_{\text {moon }}=10^{23} kg$, we get
$q=8.57 \times 10^{13} C$