Q. We would like to increase the length of a $15cm$ long copper rod of cross-section $4mm^{2}$ by $1mm.$ The energy absorbed by the rod if it is heated is $E_{1}$ . The energy absorbed by the rod if it is stretched slowly is $E_{2}.$ Then if $\frac{E_{1}}{200 E_{2}}=\frac{250}{x}$ find $x$ . [Various parameters of Copper are : Density $=9\times 10^{3}kgm^{- 3},$ Thermal coefficient of linear expansion $=16\times 10^{- 6}K^{- 1}$ Young's modulus $=135\times 10^{9}Pa$ , Specific heat $=400Jkg^{- 1}K^{- 1}$ ]
NTA AbhyasNTA Abhyas 2022
Solution: