Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. We have the following results of two samples of polythene bags from two manufacturer $A$ and $B$ tested by a prospective buyer for bursting pressure.
Bursting pressure (in $kg$ ) Number of bags manufactured
A B
5 -10 2 9
10-15 9 11
15-20 29 18
20-25 54 32
25-30 11 27
30-35 5 13

Which of the following are true?
I. Bags manufactured by $B$ have higher bursting pressure.
II. Bags manufactured by A have higher bursting pressure.
III. Bags manufactured by $A$ have more uniform pressure.
IV. Bags manufactured by $B$ have more uniform pressure.

Statistics

Solution:

To find out the correct statements, we compute coefficient of variation.
I. For manufacturer $A$
Bursting pressure Mid value $f_i$ $u_i = \frac{x_i - 17.5}{5}$ $f_iu_i$ $f_iu_i^2$
5 -10 7.5 2 -2 -4 8
10-15 12.5 9 -1 -9 9
15-20 17.5 29 0 0 0
20-25 22.5 54 1 54 54
25-30 27.5 11 2 22 44
30-35 32.5 5 3 15 45
$N = \Sigma f_i = 110$ $\Sigma u_i = 3$ $\Sigma f_iu_i = 78$ $\Sigma f_iu_i^2 = 160$

$ \bar{x}_A=a+h\left(\frac{\Sigma f u_i}{N}\right)$
$\Rightarrow \bar{x}_A=17.5+5 \times \frac{78}{110}$
$\Rightarrow \bar{x}_A=17.5+3.5 $
$ \Rightarrow \bar{x}_A=21 ....$(i)
$ \Rightarrow \sigma_A^2=h^2\left[\frac{1}{N} \Sigma t u_i^2-\left(\frac{1}{N} \Sigma t_i\right)^2\right] $
$ \Rightarrow \sigma_A^2=25\left[\frac{160}{110}-\left(\frac{78}{110}\right)^2\right] $
$ \Rightarrow \sigma_A^2=25\left[\frac{17600-6084}{110 \times 110}\right] $
$ \Rightarrow \sigma_A^2=23.79$
$\sigma_A=\sqrt{23.79}=4.87$
$\therefore $ Coefficient of variation $ =\frac{\sigma_A}{\bar{x}_A} \times 100=\frac{4.87}{21} \times 100$
$=23.19......$(ii)
II. For manufacturer B
Bursting pressure Mid value $f_i$ $u_i = \frac{x_i - 17.5}{5}$ $f_iu_i$ $f_iu_i^2$
5 -10 7.5 9 -2 -18 36
10-15 12.5 11 -1 -11 36
15-20 17.5 18 0 0 0
20-25 22.5 32 1 32 32
25-30 27.5 27 2 54 108
30-35 32.5 13 3 39 117
$N = \Sigma f_i = 110$ $\Sigma u_i = 3$ $\Sigma f_iu_i = 96$ $\Sigma f_iu_i^2 = 304$

$ \bar{x}_B=a+h\left(\frac{\Sigma f u_i}{N}\right) $
$ \Rightarrow \bar{x}_B=17.5+5 \times \frac{96}{110}$
$ \Rightarrow \bar{x}_B=17.5+4.36$
$ \Rightarrow \bar{x}_B=21.86 .....$(iii)
$ \Rightarrow \sigma_B^2=h^2\left[\frac{1}{N}\left(\Sigma f u_i^2\right)-\left(\frac{1}{N} \Sigma f u_i\right)^2\right]$
$ \Rightarrow \sigma_B^2=25\left[\frac{304}{110}-\left(\frac{96}{110}\right)^2\right] $
$ \Rightarrow \sigma_B^2=25\left[\frac{33440-9216}{110 \times 110}\right] $
$ \Rightarrow \sigma_B^2=50.04 $
$ \Rightarrow \sigma_B=\sqrt{50.04}$
$ \Rightarrow \sigma_B=7.07$
$\therefore $ Coefficient of variation $ =\frac{\sigma_B}{\bar{x}_B} \times 100 $
$=\frac{7.07}{21.86} \times 100=32.34 .....$(iv)
We find that the average bursting pressure is higher for manufacturer B [from Eqs. (i) and (iii)].
Also, the coefficient of variation is less for manufacturer A [from Eqs. (ii) and (iv)]. So, bags manufactured by A have more uniform pressure.