Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Water is poured into an inverted conical vessel of which the radius of the base is $2\, m$ and height $4 \,m$, at the rate of 77 litre/minute. The rate at which the water level is rising at the instant when the depth is $70\, cm$ is : (use $\pi=22 / 7$ )

Application of Derivatives

Solution:

image
$ \frac{ dV }{ dt }=77 \,lit / \min$
$\frac{ dh }{ dt }=\text { ? when } h =0.7 m $
$V =\frac{1}{3} \pi x ^2 h$
Also $\frac{ x }{ h }=\frac{2}{4} \Rightarrow h =2 x$
$V = \frac{1}{3} \pi \cdot \frac{ h ^2}{4} \cdot h =\frac{\pi h ^3}{12} \Rightarrow \frac{ dV }{ dt }=\frac{3 \pi h ^2}{12} \cdot \frac{ dh }{ dt } $
$77 \times 1000=\frac{\pi}{4} \times 70 \times 70 \cdot \frac{ dh }{ dt } $
$\Rightarrow \frac{ dh }{ dt }=20\, cm / \min$