Q. Water is dripping out from a conical funnel of semi-vertical angle $\frac{\pi}{4}$ at the uniform rate of $2\, cm ^{3} / \sec$ in its surface area through a tiny hole at the vertex in the bottom. When the slant height of the water is $4\, cm$, if the rate of decrease of the slant height of the water, is $\frac{\sqrt{ k }}{4 \pi} cm / \sec$ then find $k$.
Application of Derivatives
Solution: