Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Vector $\vec{ A }$ has components $A_x=2, A_y=3$ and vector $\vec{ B }$ has components $B _{ x }=4, B _{ y }=5$, then match the columns:
Column I Column II
A The y-components of vector sum $(\vec{ A }+\vec{ B })$ 1 8
B The magnitude of $\vec{ A }+\vec{ B }$ 2 $-2$
C The $x$-componet of vector difference $\vec{ A }-\vec{ B }$ 3 $2 \sqrt{2}$
D The magnitude of $(\vec{ A }-\vec{ B })$ 4 10

Motion in a Plane

Solution:

$A \rightarrow(1) ; B \rightarrow(4) ; C \rightarrow(2) ; D \rightarrow(3)$
(A) $\vec{A}=2 \hat{i}+3 \hat{j}$ and $\vec{B}=4 \hat{i}+5 \hat{j}$
$ \therefore \vec{A}+\vec{B}=6 \hat{i}+8 \hat{j}$
(B) $|\vec{A}+\vec{B}|=\sqrt{6^2+8^2}=10$
(C) $\vec{A}-\vec{B}=(2 \hat{i}+3 \hat{j})-(4 \hat{i}+5 \hat{j})=-2 \hat{i}-2 \hat{j}$
(D) $|\vec{A}-\vec{B}|=\sqrt{(-2)^2+(-2)^2}=2 \sqrt{2}$.