Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Using the standard electrode potential, find out the pair between which redox reaction is not feasible.
$E^{\circ}$ values : $Fe^{3+}/Fe^{2+} = + 0.77; I_{2\left(s\right)}/I^- = + 0.54$;
$Cu^{2+}/Cu = + 0.34$; $Ag^{+}/Ag = + 0.80\, V$

Redox Reactions

Solution:

For the reaction,
$2Fe^{3+} + 2I^{-} \to 2Fe^{2+} + I_{2}$
$E^{\circ}_{cell} = E^{\circ}_{Fe^{3+}/Fe^{2+}} - E^{\circ}_{I_2/I^{-}} = 0.77 - \left(0.54\right) = + 0.23 \,V$
Here, $E^{\circ }_{cell}$ is $+ve$ so, reaction is feasible.
For the reaction,
$Cu + 2Ag^{+} \to Cu^{2+} + 2Ag$
$E^{\circ }_{cell} = E^{\circ }_{Ag^{3+}/Ag} - E^{\circ }_{Cu^{2+}/Cu}= 0.80 - \left(0.34\right) = + 0.46 \,V$
Here, $E^{\circ }_{cell}$ is $+ve$ so, the reaction is feasible.
For the reaction, $2Fe^{3+ }+ Cu \to 2Fe^{2+} + Cu^{2+}$
$E^{\circ }_{cell} = E^{\circ }_{Fe^{3+}/Fe^{2+}} - E^{\circ }_{Cu^{2+}/Cu} = 0.77 - \left(0.34\right) = + 0.43 \,V$
Here, $E^{\circ }_{cell}$ is $+ve$ so, the reaction is feasible.
For the reaction, $Ag + Fe^{3+} \to Ag^{+} + Fe^{2+}$
$E^{\circ }_{cell} = E^{\circ }_{Fe^{3+}/Fe^{2+}} -E^{\circ }_{Ag^{3+}/Ag} = 0.77 - \left(0.80\right) = - 0.03\, V$
Here, $E^{\circ }_{cell}$ is negative so, the reaction is not feasible.