Q.
Using the data provided, calculate the multiple bond energy $\left(\text{k} \text{J} \, \text{m} \text{o} \left(\text{l}\right)^{- 1}\right)$ of a $\text{C}\equiv \text{C}$ bond in $\text{C}_{2}\text{H}_{2}$ . That energy is (take the bond energy of a $\text{C}-\text{H}$ bond as $350 \, \text{k}\text{J} \, \text{m}\text{o}\text{l}^{- 1}$ )
$2\text{C}\left(\text{s}\right) \rightarrow 2\text{C}\left(\text{g ; }\right)$ $\Delta \text{H}=1410 \, \text{k}\text{J} \, \text{m}\text{o}\text{l}^{- 1}$
$\left(\text{H}\right)_{2}\left(\text{g}\right) \rightarrow 2\text{H}\left(\right.\text{g}) :$ $\Delta \text{H}=330 \, \text{k}\text{J} \, \text{m}\text{o}\text{l}^{- 1}$
$2 \text{C} \left(\text{s}\right) + \left(\text{H}\right)_{2} \left(\text{q}\right) \rightarrow \left(\text{C}\right)_{2} \left(\text{H}\right)_{2} \, \, \, \text{;} \, \, \text{ΔH} = 225 \, \left(\text{kJmol}\right)^{- 1}$
NTA AbhyasNTA Abhyas 2022
Solution: