Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
Using the Bohr's model calculate the speed of the electron in a hydrogen atom in the π=1,2 and 3 levels.
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Using the Bohr's model calculate the speed of the electron in a hydrogen atom in the $\pi=1,2$ and 3 levels.
Atoms
A
$4.2 \times 10^{4} m / s , 3.2 \times 10^{4} m / s$ and $7.2 \times 10^{6} m / s$
18%
B
$2 \times 10^{9} m / s , 3.2 \times 10^{5} m / s$ and $7 \times 10^{5} m / s$
45%
C
$2.19 \times 10^{6} m / s , 1.01 \times 10^{6} m / s$ and $7.3 \times 10^{5} m / s$
18%
D
$2.2 \times 10^{6} m / s , 1.9 \times 10^{6} m / s$ and $7.5 \times 10^{4} m / s$
18%
Solution:
Speed of the electron in Bohr's $n$ th orbit $v=\frac{ C }{n} \alpha$
where, $\alpha=\frac{2 \pi K e^{2}}{c h}$
$\alpha=0.0073$
$\therefore v=\frac{C}{n} \times 0.0073$
For $n=1, \, v_{1}=\frac{C}{1} \times 0.0073$
$=3 \times 10^{8} \times 0.0073$
$=2.19 \times 10^{6} m / s$
For $n=2,\, v_{2}=\frac{c}{2} \times 0.0073$
$=\frac{3 \times 10^{8} \times 0.0073}{2}$
$=1.095 \times 10^{6} m / s$
For $n=3,\, v_{3}=\frac{c}{3} \times 0.0073$
$=\frac{3 \times 10^{8} \times 0.0073}{3}$
$=7.3 \times 10^{5} m / s$