Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Using dimensional analysis find out the dimensional formula for the coefficient of viscosity.

NTA AbhyasNTA Abhyas 2022

Solution:

Coefficient of viscosity $\left(\eta\right)=\frac{F x}{A v}$
F = tangential Force,
A = Area, x = distance between the layers,
v = velocity.
Dimensional Formula of Force $=M^{1}L^{1}T^{- 2}$
Dimensional Formula of Area $=M^{0}L^{2}T^{0}$
Dimensional Formula of distance $= M^{0}L^{1}T^{0}$
Dimensional Formula of velocity $=M^{0}L^{1}T^{- 1}$
Putting these values in above equation we get,
$\left[\eta\right]=\frac{\left[M^{1} L^{1} T^{- 2}\right] \left[M^{0} L^{1} T^{0}\right]}{\left[M^{0} L^{2} T^{0}\right] \left[M^{0} L^{1} T^{- 1}\right]}=\left[M^{1} L^{- 1} T^{- 1}\right]$