Q.
Unpolarised light from air incidents on the surface of a transparent medium of refractive index $1.414$ such that the reflected light is completely polarised. Match the angles given in List - I with the corresponding values given in List - II.
List-I
List-II
A
Angle of reflection
(I)
$2 \sin^{-1} \left( \sqrt{\frac{2}{3}}\right)$
B
Angle of refraction
(II)
$\sin^{-1} \left( \sqrt{\frac{2}{3}} \right) - \sin^{-1} \left( \frac{1}{\sqrt{3}} \right)$
C
Angle between incident and completely polarised rays
(III)
$\sin^{-1} \left( \frac{1}{\sqrt{3}} \right)$
D
Angle of deviation of the incident ray
(IV)
$\cos^{-1} \left( \frac{1}{\sqrt{3}} \right)$
List-I | List-II | ||
---|---|---|---|
A | Angle of reflection | (I) | $2 \sin^{-1} \left( \sqrt{\frac{2}{3}}\right)$ |
B | Angle of refraction | (II) | $\sin^{-1} \left( \sqrt{\frac{2}{3}} \right) - \sin^{-1} \left( \frac{1}{\sqrt{3}} \right)$ |
C | Angle between incident and completely polarised rays | (III) | $\sin^{-1} \left( \frac{1}{\sqrt{3}} \right)$ |
D | Angle of deviation of the incident ray | (IV) | $\cos^{-1} \left( \frac{1}{\sqrt{3}} \right)$ |
AP EAMCETAP EAMCET 2019
Solution: