Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $ \underset{x\to \frac{\pi }{6}}{\mathop{\lim }}\,\frac{\sin 2x}{\sin x} $ is equal to

Jharkhand CECEJharkhand CECE 2007

Solution:

$\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sin 2 x}{\sin x}=\lim _{x \rightarrow \frac{\pi}{6}} \frac{2 \sin x \cos x}{\sin x}=2 \lim \cos x=2 \frac{\sqrt{3}}{2}=\sqrt{3}$
Alternate Method: $\lim _{x \rightarrow \frac{\pi}{6}} \frac{\sin 2 x}{\sin x}=\frac{\sin 2 \frac{\pi}{6}}{\sin \frac{\pi}{6}}=\frac{\sqrt{3} / 2}{1 / 2}=\sqrt{3}$