Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Ultraviolet light of wavelength 200 nm is incident on polished surface of Fe (iron). Work function of the surface is 4.71 eV. What will be its stopping potential?
$ ( h = 6.626 \times 10^{ - 34} \, J-s; \, 1 e \, V = 1.6 \times 10^{ - 19 } \, J$,
c = $ 3 \times 10^8 \, ms^{ - 1} ) $

Gujarat CETGujarat CET 2008Dual Nature of Radiation and Matter

Solution:

Given that, the wavelength of incident light
$ ( \lambda ) = 200 \,nm $
= $ 200 \times 10^{ - 9 } \, m $
work function ( $ \phi $) = 4.71 eV
From Einstein's photoelectric equation
$ KE_{ max} = hv - \phi $ ...(i)
But $ KE_{ max } = e V_0 $ ...(ii)
So, $ e V_0 = hv - \phi $ $(V_0 = $ Stopping potential)
or $ e V_0 = \frac{ hc }{ \lambda } - \phi $
$ \therefore 1.6 \times 10^{ - 19 } V_0 = \frac{ 6.6 \times 10^{ - 34} \times 3 \times 10^8 - 4.71 \times 1.6 \times 10^{ - 19 }}{ 200 \times 10^{ - 9 }} $
$ \Rightarrow V_0 = \frac{ 6.6 \times 10^{ - 34} \times 3 \times 10^8 }{ 2 \times 10^{ - 7 } \times 1.6 \times 10^{ - 19 }} - \frac{ 4.71 \times 1.6 \times 10^{ - 19 }}{ 1.6 \times 10^{ - 19 }} $
$ \Rightarrow V_0 = ( 6.19 - 4.71 ) $
$ \Rightarrow V_0 = 1.48 $
$ \Rightarrow V_0 \approx 1.50 $ V