Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two wires of diameter 0.25 cm, one made of steel and other made of brass are loaded as shown in figure. The unloaded length of steel wire is 1.5 m and that of brass wire is 1.0 m. Young's modulus of steel is 2.0 × 1011 and Young's modulus of Brass 0.91 × 1011 Pa. The elongations of steel and brass wires are respectively
Question

NTA AbhyasNTA Abhyas 2022

Solution:

Given, diameter of wires (2r) = 0.25 cm
r = 0.125 cm = 1.25 × 10-3 m
For steel wire,
Load (F1) = (4 + 6) kgf = 10 × 9.8 N = 98 N
Length of steel wire (l1) = 1.5 m
Young's modulus $( Y )=\frac{ F _{1} \times l_{1}}{ A _{1} \times \Delta l_{1}}$ Change in length $\left(\Delta l_{1}\right)=\frac{ F _{1} \times l_{1}}{ A _{1} \times Y _{1}}$
$ \begin{array}{l} =\frac{ F _{1} \times l_{1}}{\pi r _{1}^{2} \times Y _{1}} \\ =\frac{98 \times 1.5}{3.14 \times\left(1.25 \times 10^{-3}\right)^{2} \times 2.0 \times 10^{11}} \\ =1.5 \times 10^{-4} m \end{array} $
For brass wire,
Load $\left(F_{2}\right)=6 kgf =6 \times 9.8 N =58.8 N$
Length of brass wire $\left(I_{2}\right)=1.0 m$
Young's modulus $\left(Y_{2}\right)=0.91 \times 10^{11} Pa$
Change in length $\left(l_{2}\right)=\frac{ F _{2} \times l_{2}}{\pi r _{2}^{2} \times Y _{2}}$
$ \begin{array}{l} =\frac{58.8 \times 1.0}{3.14 \times\left(1.25 \times 10^{-3}\right)^{2} \times 0.91 \times 10^{11}} \\ =1.3 \times 10^{-4} m \end{array} $