Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two vertical poles of height $10\,m$ and $40\,m$ stand apart on a horizontal plane. The height (in meters) of the point of intersection of the lines joining the top of each pole to the foot of the other, from this horizontal plane is

NTA AbhyasNTA Abhyas 2020

Solution:

Let $A\left(0,0\right),D\left(0,10\right),$ $B\left(x_{1} , 0\right),C\left(x_{1} ,40\right)$
Solution
Equation of $AC\Rightarrow y=\frac{40}{x_{1}}x.... \left(1\right)$
Equation $BD\Rightarrow y-10=\frac{- 10}{x_{1}}x....\left(2\right)$
From $\left(1\right)$ and $\left(2\right)$ , we get,
$\frac{x_{1} \cdot y}{40}=\frac{- \left(y - 10\right) \cdot x_{1}}{10}$
$y=-4y+40\Rightarrow y=8$