Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two thin symmetrical lenses of different nature and of different material have equal radii of curvature $R=15 \, cm$. The lenses are put close together and immersed in water $\left(\mu_{w}=\frac{4}{3}\right)$. The focal length of the system in water is 30 $cm$. The difference between refractive of the two lenses is

Ray Optics and Optical Instruments

Solution:

Let $f_{1}$ and $f_{2}$ be the focal length in water. Then
$\frac{1}{f_{1}}=\left(\frac{\mu_{1}}{\mu_{w}}-1\right)\left(\frac{1}{R}+\frac{1}{R}\right)=\left(\frac{\mu_{1}}{\mu_{w}}-1\right)\left(\frac{2}{R}\right) ....$(1)
$\frac{1}{f_{1}}=\left(\frac{\mu_{2}}{\mu_{w}}-1\right)\left(-\frac{1}{R}+\frac{1}{R}\right)=\left(\frac{\mu_{2}}{\mu_{w}}-1\right)\left(-\frac{2}{R}\right)....$(2)
Adding (1) and (2), we get
$\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{2\left(\mu_{1}-\mu_{2}\right)}{\mu_{w} R}$
or $\frac{1}{30}=\frac{2\left(\mu_{1}-\mu_{2}\right)}{\mu_{w} R}$
$\therefore \left(\mu_{1}-\mu_{2}\right)=\frac{\mu_{w} R}{60}$
Substituting the values
$\left(\mu_{1}-\mu_{2}\right)=\frac{4 \times 15}{3 \times 60}=\frac{1}{3}$