Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two tangents are drawn from a point $P$ to the circle $x^{2}+y^{2}-2 x-4 y+4=0$, such that the angle between these tangents is $\tan ^{-1}\left(\frac{12}{5}\right)$, where $\tan ^{-1}\left(\frac{12}{5}\right) \in(0, \pi) .$ If the centre of the circle is denoted by $C$ and these tangents touch the circle at points $A$ and $B$, then the ratio of the areas of $\Delta PAB$ and $\Delta CAB$ is :

JEE MainJEE Main 2021Conic Sections

Solution:

image
$\tan \theta=\frac{12}{5}$
$PA =\cot \frac{\theta}{2}$
$\therefore $ area of $\triangle PAB =\frac{1}{2}( PA )^{2} \sin \theta=\frac{1}{2} \cot ^{2} \frac{\theta}{2} \sin \theta$
$=\frac{1}{2}\left(\frac{1+\cos \theta}{1-\cos \theta}\right) \sin \theta$
$= \frac{1}{2} \left(\frac{1+\frac{5}{13}}{1-\frac{5}{13}}\right)\left(\frac{12}{13}\right) = \frac{118}{218}\times\frac{2}{13} = \frac{27}{26}$
area of $\Delta CAB =\frac{1}{2} \sin \theta=\frac{1}{2}\left(\frac{12}{13}\right)=\frac{6}{13}$
$\therefore \frac{\text { area of } \Delta PAB }{\text { area of } \Delta CAB }=\frac{9}{4} $