Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two sinusoidal waves given below are superposed
$y_{1}=A \sin \left(k x-\omega t+\frac{\pi}{6}\right), y_{2}=A \sin \left(k x-\omega t-\frac{\pi}{6}\right)$
The equation of resultant wave is

Waves

Solution:

$y^{\prime}=y_{1}+y_{2}$
or $y'=A \sin \left(k x-\omega t+\frac{\pi}{6}\right)+A \sin \left(k x-\omega t-\frac{\pi}{6}\right)$
or $y'=2 A \sin (k x-\omega t) \cdot \cos \left(\frac{\left(\frac{\pi}{6}+\frac{\pi}{6}\right)}{2}\right)$
or $y'=2 A \frac{\sqrt{3}}{2} \sin (k x-\omega t)$
$\therefore y'=A \sqrt{3} \sin (k x-\omega t)$