Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two sides of a triangle are given by the roots of the quadratic equation $x^{2}-2\sqrt{3}x+2=0$ and the angle between the sides is $\frac{\pi }{3}$ . The perimeter of the triangle is

NTA AbhyasNTA Abhyas 2022Complex Numbers and Quadratic Equations

Solution:

Let the two sides $a$ and $b$ are the roots of the quadratic equation $x^{2}-2\sqrt{3}x+2=0$
. Solution
$\therefore a+b=2\sqrt{3}$ and $ab=2$ . Also, $\angle C=\frac{\pi }{3}$
Using cosine rule,
$cosC=\frac{a^{2} + b^{2} - c^{2}}{2 a b}\Rightarrow \frac{1}{2}=\frac{a^{2} + b^{2} - c^{2}}{2 a b}$
$\Rightarrow a^{2}+b^{2}-c^{2}=ab\Rightarrow \left(a + b\right)^{2}-c^{2}=3ab$
$=>\left(2 \sqrt{3}\right)^{2}-c^{2}=3\times 2\Rightarrow c=\sqrt{6}$
$\therefore $ Perimeter $=a+b+c=2\sqrt{3}+\sqrt{6}$ units