Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Two points from the set of Concyclic points of the circle passing through (1,1),(2,-1),(3,2) is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Two points from the set of Concyclic points of the circle passing through $(1,1),(2,-1),(3,2)$ is
TS EAMCET 2020
A
$\left(\frac{5}{2}+\sqrt{\frac{5}{2}}, \frac{1}{2}+\sqrt{\frac{5}{2}}\right),\left(\frac{5}{2}, \frac{1}{2}+\sqrt{\frac{5}{2}}\right)$
B
$\left(\frac{5}{2}+\sqrt{\frac{5}{2}}, \frac{1}{2}\right),\left(\frac{5+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$
C
$\left(\frac{5+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{\sqrt{2}}\right),\left(\frac{5}{2}+\sqrt{\frac{5}{2}}, \frac{1+\sqrt{5}}{4}\right)$
D
$\left(\frac{5}{2}-\frac{\sqrt{5}}{2^{\prime}} \frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(\frac{5}{2}-\frac{\sqrt{5}}{2}, \frac{1}{2}+\frac{\sqrt{5}}{2}\right)$
Solution:
Equation of circle passing through the points $(1,1),(2,-1)$ and $(3,2)$ is
$\begin{vmatrix}x^{2}+y^{2} & x & y & 1 \\ 1+1 & 1 & 1 & 1 \\ 4+1 & 2 & -1 & 1 \\ 9+4 & 3 & 2 & 1\end{vmatrix}=0$
$\begin{vmatrix}x^{2}+y^{2} & x & y & 1 \\ 2 & 1 & 1 & 1 \\ 5 & 2 & -1 & 1 \\ 13 & 3 & 2 & 1\end{vmatrix}=0$
$\begin{vmatrix}x^{2}+y^{2}-2 & x-1 & y-1 & 0 \\ -3 & -1 & 2 & 0 \\ -8 & -1 & -3 & 0 \\ 13 & 3 & 2 & 1\end{vmatrix}=0$
$\begin{vmatrix}x^{2}+y^{2}-2 & x-1 & y-1 \\ -3 & -1 & 2 \\ -8 & -1 & -3\end{vmatrix}=0$
$\left(x^{2}+y^{2}-2\right)(3+2)-(x-1)(9+16)+(y-1)(3-8)=0 $
$5\left(x^{2}+y^{2}-2\right)-25(x-1)-5(y-1)=0$
$x^{2}+y^{2}-2-5(x-1)-(y-1)=0 $
$x^{2}+y^{2}-2-5 x+5-y+1=0$
$x^{2}+y^{2}-5 x-y+4=0$
Now, by putting all the points, we see
$\left(\frac{5}{2}+\sqrt{\frac{5}{2}}, \frac{1}{2}\right\}\left(\frac{5+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$
passes through above circle.