Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Two persons A and B throw a die alternately till one of them gets a 3 and wins the game, the respective probabilities of winning, if A begins, are:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Two persons A and B throw a die alternately till one of them gets a $ 3 $ and wins the game, the respective probabilities of winning, if $ A $ begins, are:
KEAM
KEAM 2005
A
$ \frac{7}{11},\frac{4}{11} $
B
$ \frac{6}{11},\frac{5}{11} $
C
$ \frac{5}{6},\frac{1}{6} $
D
$ \frac{4}{7},\frac{3}{7} $
E
$ \frac{1}{2},\frac{1}{2} $
Solution:
$ \because $ $ p(A)=\frac{1}{6},p(\overline{A})=\frac{5}{6} $
and $ p(B)=\frac{1}{6},p(\overline{B})=\frac{5}{6} $
Hence, Probability of winning of A $ [=P(E)+P(\overline{E}\cap \overline{F}\cap \overline{E})+ $
$ P(\overline{E}\cap \overline{F}\cap \overline{E}\cap \overline{F}\times E)+.... $
$ =\frac{1}{6}+{{\left( \frac{5}{6} \right)}^{2}}\left( \frac{1}{6} \right)+{{\left( \frac{5}{3} \right)}^{4}}\left( \frac{1}{6} \right)+..... $ $ =\frac{\frac{1}{6}}{1-{{\left( \frac{5}{6} \right)}^{2}}}=\frac{6}{11} $
Also, probability of winning $ B=1-\frac{6}{11}\text{=}\frac{5}{11}. $