Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two particles whose masses are $10 \, kg$ and $30 \, kg$ and their position vectors are $\hat{i}+\hat{j}+\hat{k}$ and $-\hat{i}-\hat{j}-\hat{k}$ respectively would have the centre of mass at

NTA AbhyasNTA Abhyas 2022

Solution:

$\overset{ \rightarrow }{r_{c m}}=\frac{m_{1} \overset{ \rightarrow }{r_{1}} + m_{2} \overset{ \rightarrow }{r_{2}}}{m_{1} m_{2}}$
$\Rightarrow \, \overset{ \rightarrow }{r_{c m}}=\frac{10 \left(\hat{i} + \hat{j} + \hat{k}\right) + 30 \left(- \hat{i} - \hat{j} - \hat{k}\right)}{40}$
$\Rightarrow \, \, \, \overset{ \rightarrow }{r_{c m}}=\frac{- 20 \left(\hat{i} + \hat{j} + \hat{k}\right)}{40}$
$\Rightarrow \, \, \, \overset{ \rightarrow }{r_{c m}}=-\frac{\left(\hat{i} + \hat{j} + \hat{k}\right)}{2}$