Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two particles are projected from the same point with the same speed, at different angles $\theta_{1}$ and $\theta_{2}$ to the horizontal. They have the same horizontal range. Their times of flights are $t_{1}$ and $t_{2}$ respectively. Then
(1) $\theta_{1}+\theta_{2}=90^{\circ}$
(2) $\frac{t_{1}}{\sin \theta_{1}}=\frac{t_{2}}{\sin \theta_{2}}$
(3) $\frac{t_{1}}{t_{2}}=\tan \theta_{1}$
(4) $\frac{t_{1}}{t_{2}}=\tan \theta_{2}$

BHUBHU 2010

Solution:

Projectiles have the same horizontal range for complimentary angles of projection.
$\therefore \theta_{1}+\theta_{2}=90^{\circ} $
$ \theta_{2}=90^{\circ}-\theta_{1}$
The time of flight for first particle;
$t_{1}=\frac{2 u \sin \theta_{1}}{g}$
The time of flight for second particle
$t_{2}=\frac{2 u \sin \theta_{2}}{g} $
$\therefore \frac{t_{1}}{t_{2}}=\frac{\sin \theta_{1}}{\sin \theta_{2}} t_{1}$
Or $\frac{t_{1}}{\sin \theta_{1}}=\frac{t_{2}}{\sin \theta_{2}}$
Again, $\frac{t_{1}}{t_{2}}=\frac{\sin \theta_{1}}{\sin \theta_{2}}$
Or $\frac{t_{1}}{t_{2}}=\frac{\sin \theta_{1}}{\sin \left(90-\theta_{1}\right)}$
$\frac{t_{1}}{t_{2}}=\frac{\sin \theta_{1}}{\cos \left(\theta_{1}\right)}$
$\therefore \frac{t_{1}}{t_{2}}=\tan \theta_{1}$