Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two independent harmonic oscillators of equal mass are oscillating about the origin with angular frequencies $ω_1$ and $ω_2$ and have total energies $E_1$ and $E_2$, respectively. The variations of their momenta p with positions x are shown in the figures. If $\frac{a}{b} = n^{2}$ and $\frac{a}{R} = n, $ then the correct equation(s) is(are)Physics Question Image

JEE AdvancedJEE Advanced 2015

Solution:

$I^{st}$ harmonic oscillator.
$\frac{P^{2}}{b^{2}}+\frac{x^{2}}{a^{2}} = 1$
$P^{2} = b^{2} \left(1-\frac{x^{2}}{a^{2}}\right)$
$P = \frac{b}{a} \sqrt{a^{2}-x^{2}}$
$\Rightarrow v = \frac{P}{m}$
$v = \frac{b}{am} \sqrt{a^{2}-x^{2}}$
Comparing $\quad v = \omega\sqrt{A^{2}-x^{2}}$
$\omega_{1} = \frac{b}{am}, A_{1} = a$
$\& \,E_{1} = \frac{1}{2} m \omega^{2}_{1} A^{2}_{1}$
$II^{nd}$ harmonic oscillation
$P^{2} + x^{2} = R^{2}$
$P = \sqrt{R^{2}-x^{2}}$
$v = \frac{P}{m}$
$v = \frac{1}{m} \sqrt{R^{2}-x^{2}}\quad\quad\left(v = \omega\sqrt{A^{2}-x^{2}}\right)$
Comparing$\quad\omega_{2} = \frac{1}{m}, A_{2} = R_{1}$
$E_{2} = \frac{1}{2} m \,\omega^{2}_{2} A^{2}_{2}$
$\left(1\right)\quad \frac{\omega_{2}}{\omega_{1}} = \frac{\frac{1}{m}}{\frac{b}{am}}$
$\Rightarrow \quad \frac{\omega_{2}}{\omega_{1}} = \frac{a}{b}\quad\quad$ (given $\frac{a}{b} = n^{2}$)
$\frac{\omega_{2}}{\omega_{1}} = n^{2}$
$\left(2\right)\quad \frac{E_{1}}{\omega_{1}} = \frac{1}{2} m\omega_{1} A^{2}_{1}$
$\Rightarrow \quad \frac{E_{1}}{\omega_{1}} = \frac{1}{2} m \left(\frac{b}{am}\right) \left(a\right)^{2}$
$\frac{E_{1}}{\omega_{1}} = \frac{1}{2} ab$
$\&\quad \frac{E_{2}}{\omega_{2}} = \frac{1}{2} m \left(\omega_{2}\right) A^{2}_{2}$
$\frac{E_{2}}{\omega^{2}} = \frac{1}{2} m \left(\frac{1}{m}\right) \left(R\right)^{2}$
$\frac{E_{2}}{\omega_{2}} = \frac{R^{2}}{2}$
the value of ab $= \frac{a^{2}}{n^{2}} \left(\frac{a}{b} = n^{2}\right)$
$\& \quad R^{2} = \frac{a}{n^{2}} \left(\frac{a}{R} = n\right)$
So$\quad \frac{E_{1}}{\omega_{1}} = \frac{E_{2}}{\omega_{2}}$

Solution Image Solution Image