Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two identical thin rings, each of radius $10\,cm$ carrying charges $10\,C$ and $5\,C$ are coaxially placed at a distance $10\,cm$ apart. The work done in moving a charge $q$ from the centre of the first ring to that of the second is

KEAMKEAM 2012Electrostatic Potential and Capacitance

Solution:

Work done $W=q\left(V_{2}-V_{1}\right)$
image
$V_{1} =\frac{Q_{1}}{4 \pi \varepsilon_{0} R_{1}}+\frac{Q_{2}}{4 \pi \varepsilon_{0} R \sqrt{2}} $
$=\frac{10}{4 \pi \varepsilon_{0} \times 10}+\frac{5}{4 \pi \varepsilon_{0} 10 \sqrt{2}} $
$V_{2} =\frac{Q_{2}}{4 \pi \varepsilon_{0} R}+\frac{Q_{1}}{4 \pi \varepsilon_{0} R \sqrt{2}} $
$=\frac{5}{4 \pi \varepsilon_{0} \times 10}+\frac{10}{4 \pi \varepsilon 10 \sqrt{2}} $
$V_{2}-V_{1} =\frac{5}{4 \pi \varepsilon_{0} 10 \sqrt{2}}-\frac{5}{4 \pi \varepsilon_{0} \times 10} $
$=\frac{5}{4 \pi \varepsilon_{0} 10}\left[\frac{1}{\sqrt{2}}-1\right]=\frac{1}{8 \pi \varepsilon_{0}}\left[\frac{\sqrt{2}-1}{\sqrt{2}}\right] $
$\therefore W =\frac{q}{8 \pi \varepsilon_{0}}\left[\frac{\sqrt{2}-1}{\sqrt{2}}\right]$