Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two identical parallel plate capacitors, of capacitance $C$ each, have plates of area $A$, separated by a distance $d$. The space between the plates of the two capacitors, is filled with three dielectrics, of equal thickness and dielectric constants $K_1, K_2$ and $K_3$. The first capacitor is filled as shown in fig. $I$, and the second one is filled as shown in fig. $II$.
If these two modified capacitors are charged by the same potential $V$, the ratio of the energy stored in the two, would be ($E_1$ refers to capacitor (I) and $E_2$ to capacitor (II) :Physics Question Image

JEE MainJEE Main 2019Electrostatic Potential and Capacitance

Solution:

$
\begin{aligned}
\text { I. } C_{1} &=\frac{3 \epsilon_{0} AK _{1}}{ d } \text { (see fig. I) } \\
C _{2} &=\frac{3 \in_{0} AK _{2}}{ d } \\
C _{3} &=\frac{3 \in_{0} AK _{3}}{ d } \\
\frac{1}{ C _{ eq }} &=\frac{1}{ C _{1}}+\frac{1}{ C _{2}}+\frac{1}{ C _{3}} \\
\Rightarrow C _{ eq } &=\frac{3 \in_{0} AK _{1} K _{2} K _{3}}{ d \left( K _{1} K _{2}+ K _{2} K _{3}+ K _{3} K _{1}\right)}
\end{aligned}
$
II. $C_{1}=\frac{€_{0} K_{1} A}{3 d}$ (see fig. II)
$
\begin{array}{l}
C_{2}=\frac{\in_{0} K _{2} A }{3 d } \\
C _{3}=\frac{\in_{0} K _{3} A }{3 d } \\
C _{ eq }^{\prime}= C _{1}+ C _{2}+ C _{3} \\
=\frac{\in_{0} A }{3 d }\left( K _{1}+ K _{2}+ K _{3}\right)
\end{array}
$
Now,
$
\frac{ E _{1}}{ E _{2}}=\frac{\frac{1}{2} C _{ eq } \cdot V ^{2}}{\frac{1}{2} C _{ eq }^{\prime} V ^{2}}=\frac{9 K _{1} K _{2} K _{3}}{\left( K _{1}+ K _{2}+ K _{3}\right)\left( K _{1} K _{2}+ K _{2} K _{3}+ K _{3} K _{1}\right)}
$
so $\frac{ E _{1}}{ E _{2}}=\frac{\frac{1}{2} C _{ eq } \cdot V ^{2}}{\frac{1}{2} C _{ eq }^{\prime} V ^{2}}=\frac{9 K _{1} K _{2} K _{3}}{\left( K _{1}+ K _{2}+ K _{3}\right)\left( K _{1} K _{2}+ K _{2} K _{3}+ K _{3} K _{1}\right)}$
image