Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two discs of moment of inertia $ {{I}_{1}} $ and $ {{I}_{2}} $ and angular speeds $ {{\omega }_{1}} $ and $ {{\omega }_{2}} $ are rotating along collinear axes passing through their centre of mass and perpendicular to their plane. If the two are made to rotate combindly along the same axis the rotational KE of system will be

MGIMS WardhaMGIMS Wardha 2008

Solution:

Conservation of angular momentum $ {{I}_{1}}{{\omega }_{1}}+{{I}_{2}}{{\omega }_{2}}=({{I}_{1}}+{{I}_{2}})\omega $ Angular velocity of system $ \omega =\frac{{{I}_{1}}{{\omega }_{1}}+{{I}_{2}}{{\omega }_{2}}}{{{I}_{1}}+{{I}_{2}}} $ $ \therefore $ Rotational kinetic energy $ =\frac{1}{2}({{I}_{1}}+{{I}_{2}}){{\omega }^{2}} $ $ =\frac{1}{2}({{I}_{1}}+{{I}_{2}}){{\left( \frac{{{I}_{1}}{{\omega }_{1}}+{{I}_{2}}{{\omega }_{2}}}{{{I}_{1}}+{{I}_{2}}} \right)}^{2}} $ $ =\frac{{{({{I}_{1}}{{\omega }_{1}}+{{I}_{2}}{{\omega }_{2}})}^{2}}}{2({{I}_{1}}+{{I}_{2}})} $