Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two different coils have self-inductance $ L_{1} = 9 \,mH $ and $ L_{2} = 3\, mH $ . At a certain instant, the current in the two coils is increasing at the same rate and the power supplied to the coils is also the same. The ratio of the energy stored in the two coils $ (U_{1} / U_{2}) $ at that instant is

AMUAMU 2018Electromagnetic Induction

Solution:

Given that $L_{1}=9\,mH$
$L_{2}=3\,mH$
$\frac{dI_{1}}{dt}=\frac{dI_{2}}{dt} \ldots\left(i\right)$
Power $P_{1}=P_{2}$
$e_{1}I_{1}=e_{2}I_{2}$
$\frac{e_{1}}{e_{2}}=\frac{I_{2}}{I_{1}}$
$\frac{L_{1}\frac{dI_{1}}{dt}}{L_{2}\frac{dI_{2}}{dt}}=\frac{I_{2}}{I_{1}}$
Hence, $\frac{L_{1}}{L_{2}}=\frac{I_{2}}{I_{1}}$
or $\frac{L_{2}}{L_{1}}=\frac{I_{1}}{I_{2}} \ldots\left(ii\right)$
$\therefore \frac{U_{1}}{U_{2}}=\frac{\frac{1}{2}L_{1} I_{1}^{2}}{\frac{1}{2}L_{2}I_{2}^{2}}$
$=\frac{L_{1}}{L_{2}}\left(\frac{I_{1}}{I_{2}}\right)^{2}$ [from Eq. $\left(ii\right)$]
$=\frac{L_{2}}{L_{1}}=\frac{3}{9}=\frac{1}{3}$